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This paper deals theoretically with a filmwise condensation of a vapour on the endwall 
of a shock tube behind a reflected shock wave. The gas dynamics, accompanied by 
heat and mass transfer at the vapour-liquid interface, is treated by the method of 
matched asymptotic expansions. The first and second approximate solutions are 
obtained and evaluated numerically. It is clarified that there exists a transition 
process on the growth of a liquid film, that is, the liquid film grows approximately 
in proportion to the time t in the early stages after the reflection of the shock wave, 
and after some time, it grows in proportion to the square root of the time. This 
transition process from the t-dependent growth to the d-dependent one is mainly 
controlled by the intensity of condensation. In  the t-dependent growth region, the 
growth rate of the liquid film is proportional to the condensation parameter, 
depending both upon an initial condition and upon thermal properties of the vapour 
and the liquid film, while in the d-dependent growth region it becomes independent 
of the condensation parameter and is controlled only by thermal properties of the 
vapour, liquid film and shock-tube endwall. This result suggests that the measure- 
ment of the condensation parameter by shock tubes should be made in the t-dependent 
growth region immediately after the reflection of the shock wave. 

1. Introduction 
The condensation of a vapour in a thermodynamic non-equilibrium state is one of 

the fundamental problems in thermo-fluid dynamics and it is also concerned with 
many problems in engineering. From the aspect of molecular gas dynamics, it has 
been treated as a problem of the interaction between vapour molecules and their 
condensed matter. Theoretical studies have been made by Mortensen 6 Eyring 
(1960) using the theory of rate processes, and by Schrage (1953), Kogan & Makashev 
(1971), Sone & Onishi (1973, 1978) and Labuntsov & Kryukov (1979) from the 
viewpoint of the kinetic theory of gases. Experimental studies, on the other hand, 
have been made by Wegener & Pouring (1964), Kawada & Mori (1973) and Sislian 
& Glass (1976) using nozzles or shock tubes. 

Of particular relevance to the subject treated in this paper are the shock-tube 
experiments by Goldstein (1964), Grosse & Smith (1968), Smith (1973) and Fujikawa 
et al. (1982, 1985). Goldstein (1964) first made an experiment on the condensation 
of water vapour on the sidewalls of a shock tube and tried to measure a so-called 
condensation coefficient (Schrage 1953 ; Labuntsov & Kryukov 1979). The conden- 
sation was produced in the following way. Behind an incident shock wave, the vapour 
is compressed and heated, but it is rapidly cooled because of the large difference in 
heat capacities between the vapour and the shock-tube sidewalls. An unsteady 
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thermal boundary layer forms on the walls and it develops into the vapour region. 
Under an appropriate initial condition, the vapour begins to condense on the walls. 
The experiment showed that filmwise or dropwise condensation took place on the 
sidewalls depending upon their nature. Following Goldstein, Grosse & Smith (1968) 
also confirmed the condensation of vapour on the sidewalls of a shock tube. The 
growth of a liquid film formed on the walls was, however, found to be disturbed by 
the presence of a viscous boundary layer on the walls behind the incident shock wave. 
Later, Smith (1973) improved Goldstein’s method by paying attention to a filmwise 
condensation on the endwall of a shock tube behind a reflected shock wave. The 
experiment demonstrated that a liquid film formed uniformly on the endwall and that 
the growth behaviour of it might be analysed in terms of two different models, one 
for time less than 10 ps and one for longer times. Except in the early stages after the 
reflection of the shock wave, the liquid film grew in proportion to the square root 
of the time for time intervals of the order of milliseconds. Unfortunately, Smith was 
not able to deduce the condensation coefficient from the experimental data because 
the growth process of the liquid film mentioned above was not sufficiently understood. 
Fujikawa et al. (1982,1985) followed the experimental method which Smith proposed 
(1973), and tried to get the condensation coefficient of methanol vapour, paying 
attention t o  an early stage of the liquid-film growth; however, the growth mechanism 
of the liquid film remained vague. It is therefore important to construct a theoretical 
framework of the condensation process on the shock-tube endwall and to cast light 
on it, because Smith’s method seems to be quite suitable not only for measuring 
condensation coefficients of vapours but for understanding other fundamental 
aspects of condensation - for example, the temperature discontinuity at the liquid 
surface, It is also expected that the analysis will be of intrinsic interest, because i t  
deals with a general problem in one-dimensional heat and mass transfer among three 
phases, i.e. vapour, liquid film and solid wall. 

It should be mentioned here that the present analysis is the development of a work 
of Clarke (1967) to the shock-induced condensation, in which he has treated the 
reflection of a shock wave from a heat-conducting wall by using the method of 
matched asymptotic expansions. 

2. Theoretical analysis 
2.1. Statement of problem 

Figure 1 shows the propagation process of a shock wave in a vapour advancing 
towards and reflecting then from the solid end wall of a shock tube. 0 is taken to 
be the origin of time, the moment of the shock-wave reflection. Just at the instant 
when the shock wave reflects at the endwall, the pressure, temperature and density 
of the vapour increase in a stepwise fashion from an initially low state to a high one. 
The temperature of the vapour at the endwall decreases rapidly because of the large 
difference in heat capacities between the vapour and the solid endwall. Then, the 
vapour begins to condense in the form of a liquid film on the endwall and an unsteady 
thermal boundary layer develops into the vapour region at the same time. The liquid 
film continues to grow as the time lapses. The vapour flow induced by the 
condensation has an influence on the propagation process of the reflected shock wave. 
We will deal theoretically with the gas dynamics accompanied by heat and mass 
transfer at the vapour-liquid interface. 
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FIGURE 1. The propagation process of the shock wave in the vapour advancing towards and 
reflecting from the shock-tube endwall. 

2.2.  Governing equations 
The following assumptions will be made : (i) the vapour flow is one-dimensional; (ii) 
the vapour is thermally and calorically perfect; (iii) internal degrees of freedom of 
vapour molecules are neglected ; (iv) a homogeneous nucleation within the thermal 
boundary layer is neglected; (v) the thermal conductivity and the shear viscosity of 
the vapour are proportional to the vapour temperature; (vi) the physical properties 
of liquid film and shock-tube endwall (optical glass) are constant ; (vii) a liquid film 
with a certain thickness already exists on the shock-tube endwall before the incidence 
of the shock wave. The validity of assumption (i) is restricted by the bifurcation effect 
due to an interaction of the reflected shock wave with a viscous boundary layer on 
shock-tube sidewalls. For a shock tube with 30 mm diameter, this assumption may 
be valid during about 40-50 ps for rather weak shock waves (incident shock Mach 
number less than 1.2). The assumptions (ii)-(vi) greatly facilitate the analysis without 
losing the generality of it, but they are not absolutely necessary. The analysis in an 
ideal situation seems to be the first step in understanding the problem under 
consideration. Assumption (vii) is reasonable in the case where an initially set vapour 
pressure, before the reflection of the shock wave, is not too low in comparison with 
the saturated vapour pressure. 

The coordinate system for the vapour, liquid film and shock-tube endwall is also 
shown in figure 1. 0, is the origin of the 2’-coordinate system stemming from the 
liquid-film surface into the vapour region and it is moving with the growth of 
the liquid film. However, it  is not necessary to describe governing equations for the 
vapour by the moving coordinate because the growth rate of the liquid film is much 
smaller than the velocity of the vapour at the liquid-film surface. 0, is the origin of 
the y’-coordinate system which stems from the liquid-solid interface into the 
shock-tube endwall. The s’(t’) indicates the thickness of the liquid film. The position 
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of 0, measured by the 2’-system is -&‘(t’). The prime indicates a dimensional 
quantity. 

Governing equations for the vapour described by the x’-coordinate system are given 
as follows : 

continuity equation : 

momentum equation : 

Dt’ - & = ) + ( K ’ + w  (3 7 , 
DT’ D ~ ’  a a T  energy equation : 

p’CkDt’-- - 

state equation : p‘ = p‘W‘T, 

where t’ is the time, p‘ the density, p‘ the pressure, T the temperature, u’ the velocity, 
Ca the specific heat of vapour at constant pressure, A’ the thermal conductivity, K’ 

the bulk viscosity, p’ the shear viscosity and 9’ the gas constant. The bulk viscosity 
K’ will be disregarded. D/Dt’ is the usual convective operator. 

The temperatures of the liquid film and the shock-tube endwall satisfy the following 
heat conduction equations : 

where 0; and Di are the thermal diffusivities of the liquid film and the shock-tube 
endwall respectively, and they are assumed to be constant. The subscripts 1 and s 
indicate the liquid film and the shock-tube endwall. The dot means the differentation 
with respect to the time t’. The term including k in (2.5) indicates the effect of the 
growth of the liquid film on the heat flow. 

The velocity and temperature of the vapour at the liquid-film surface are given 
by the kinetic theory of gases as follows (Sone & Onishi 1973, 1978) : 

u’(t’, 0) P’P’ 0) 

T ( t ‘ ,  0 )  U’(t’ ,  0 )  

{29’T;(t’, O)}g = -g, { p*‘it’) 1) 
-- 
T;(t’,O) - ’ {2WT;(t’, O)}k’ 

where p*’(t’) is a saturated vapour pressure corresponding to the surface temperature 
of the liquid film and the quantities uc and ut are positive constant values which 
depend upon the kind of vapour and the surface condition of the liquid film. They 
can be interpreted as substance parameters and will be called hereinafter the 
‘condensation parameter ’ and the ‘temperature parameter ’ respectively. These 
values must be determined by experiments. In particular, in the case where molecules 
approaching the liquid surface are completely captured by the surface and the 
molecules emitted from the surface have a Maxwellian distribution corresponding to 
the saturated vapour at the temperature of the condensed matter, the condensation 
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parameter u, is 4.6904 x lo-’ and the temperature parameter ut is 4.4675 x lo-’ (Sone 
& Onishi 1973, 1978). It must be noted that (2.7) and (2.8) are valid only for cases 
of low-intensity condensation, i.e. a flow Mach number in the reflected shock region 
4 1 .  The denominator (2W’T;(t’, O ) ) t  of the left-hand side of (2.7) is a quantity with 
the dimension of the velocity and is of the order of sound speed. Therefore, (2.7) is 
valid under a condition Iu’(t’, 0)/(2W’T;(t’, 0)):l 4 1 .  This restriction comes from the 
fact that (2.7) has been derived from a relaxation model of a linearized Boltzmann 
equation under the assumption of a small deviation from an equilibrium state. A 
further remark should be made on (2 .7) .  A so-called condensation coefficient (Schrage 
1953; Labuntsov & Kryukov 1979) is not used in (2.7)’ but instead the condensation 
parameter is introduced. The value of uc = 4.6904 x lo-’ just corresponds to the 
condensation coefficient unity if the vapour density is assumed to be equal to  the 
saturated vapour density in (2.7). The value of u, may be actually smaller than 
the one above. 

The energy balance at the liquid-film surface is: 

where L’ is the latent heat of condensation. The temperature of the liquid film and 
the shock-tube endwall and the energy balance at the liquid-solid interface are : 

T;(t’, X‘ = -8’) = TL(t’, y‘ = 0 ) ,  (2.10) 

The initial conditions are set as follows : 

P’(0, 2’ > 0) = P,’ 

P ’ ( 0 , X ’  > 0) = P m ,  

u’(0,x’ > 0 )  = 0, 

T’(0, x’ > 0 )  = T,, 

T;(O, x’ < 0 )  = cT,, 

(2.11) 

( 2 . 1 2 ~ )  

(2.12b) 

(2.12c) 

(2.12d) 

(2.13) 

Ti (0 ,  y‘ 5 0 )  = cT,. (2.14) 

The fluid dynamical quantities (p,,T,,p,) with the suffix co are the ones in an 
undisturbed state behind an ‘ideal’ reflected shock wave. The word ‘ideal’ means 
a steady, inviscid, non-heat-conducting and non-vapour-condensing state. Before the 
initial instant the liquid film and the solid are at a uniform temperature cT,. 

2.3. Non-dimensional variables and variable transformations 
The following non-dimensional variables are introduced : 

(2.15) 

(2.16) 
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where a,, A,, p, and D,( = A,/p,/Ca) are reference values of the sound speed of 
the vapour, the thermal conductivity, the shear viscosity and the thermal diffusivity, 
respectively. Two non-dimensional parameters are introduced, as shown in (2.16), the 
Prandtl number Pr and a parameter R. The latter can be interpreted as a Reynolds 
number defined by the sound speed a,, the length a ,  t ,  and the thermal diffusivity 
D,. It should be noted that there is no macroscopic reference length a priori in the 
problem which we are treating now, so that an arbitrary reference time t,  had to 
be introduced in order to define a reference length. However, it will be shown at a 
later stage that the reference time or the reference length is uniquely determinable 
from R through a perturbation matching procedure. 

Now, it is convenient to introduce a Lagrangian coordinate x for the gas dynamic 
equations : 

x = p(t,9)d2. (2.17) loX 
Hence, (2.18 a)  

(2.18b) 

where m = ( P U ) ~ - ~ ,  the mass flux rate at the vapour-liquid interface and a function 
of the time alone. Using x and t as independent variables, we obtain the following 
relations (Spalding 1956) : 

2 2 v v 

a a  a 
at at ax -+-- (pu - m) - . 

( 2 . 1 9 ~ )  

(2.19 b)  

For a growing liquid film, a modified Landau transformation will be introduced 
(Ockendon & Hodgkins 1975) : 

(2.20) 
X 

[ = j + l .  

The domain of the space variable is now [0,1], while it was [ - S , O ]  in the (x,t)- 
coordinates. The moving-boundary problem thus becomes a fixed one. Using 5 and 
t as independent variables, we obtain the following relations : 

(2.21 a )  

(2.21 b)  

where the growth rate of the liquid film 8 can be related to the mass flux rate m at 
the vapoul-liquid interface through 

a=-- m, 

where the dot means differentiation with respect to the non-dimensional time t and 
will be used hereinafter in this sense. 

(2.22) * 1  

P1 



Non-equilibrium vapour condensation on a ahock-tube endwall 299 

By the use of the non-dimensional variables of (2.15), two parameters of (2.16) and 
the transformations of (2.19a, b) and (2.21 a,  b), (2.1)-(2.14) reduce to 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

where y is the specific heat ratio of the vapour and p,, p x ,  . . . etc. denote partial 
differentiations with respect to t, x, . . . (except subscripts 1 and 8) .  

2.4. Matched asymptotic expansions 
Clarke (1967) has made the analysis of shock-wave reflection from a heat-conducting 
shock-tube endwall by using the method of matched asymptotic expansions. We will 
follow the work of Clarke, in which a thin thermal boundary layer is introduced in 
the gas region near the interface and the whole gas region is divided into two parts, 
an ‘ inner ’ one and an ‘ outer ’ one. 

2.4.1. Outer expansions 
The pressure, temperature and velocity of the vapour behind the reflected shock 

wave are assumed to be expanded as follows. 

(2.37) 

(2.38) 

(2.39) 
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which are valid as R+ 00 with t ,  x fixed. The functions p,, 0, and u, ( n  = 0, 1,2, . . .) 
are of the order of unity. The functions e,(R) must be determined so as to ensure 
this, and e,+,(R)/e,(R)+O as R+m. We assume that eo(R) = 1. It is reasonable to 
assume that the leading terms in (2.37)-(2.39) are put equal to the quantities for the 
‘ideal’ reflected shock wave given by (2.34), i.e. 

P&, x) = 1, 0,(t, x) = 1, pov, x) = 1,  uo(t, x) = 0. (2.40) 

2.4.2. Inner expansions 
The pressure, temperature and velocity of the vapour adjacent to the liquid-film 

surface are assumed to be expanded by stretching the X-coordinate, i.e. 

(2.41) 

(2.42) 

x) - do(R){Uo(t, !4 +A,@) UlP, $4 + 3 *.I. (2.43) 

The functions P,, 8, (n = 0, 1 , 2 , .  . .) are of the order of unity; the functions d,(R) 
must be determined so as to ensure this. Concerning the velocity, the normalizing 
function do@) is introduced as shown in (2.43) and it can be determined by the 
matching between the boundary condition (2.29) and (2.43) at the vapour-liquid 
interface. We might reasonably suppose that the liquid film and shock-tube endwall 
temperatures (el, 0,) and the liquid-film thickness 6 are closely connected to the inner 
solutions for the vapour under consideration through (2.29), (2.30) and (2.32). 
Therefore, these functions are assumed to be expanded in the forms 

4(t, 5) 01,(t, 5) + d, (R)  &(t,  5) + - 7 (2.44) 

0,(4Y) 0so(t,Y)+d,(R)e,,(t,y)+..., (2.45) 

&(t)  - do(R){Jo(t) + d,(R)  &,(t) + . . .I. (2.46) 

The functions el,, 0,, and 6, (n = 0, 1 , 2 , .  . .) are of the order of unity. It is convenient 
to expand the mass flux rate m formally as follows. 

m(t) - do(R) {mom + d , (R)  q ( t )  + * . .> (2.47) 

where the function m, (n = 0,1 ,2 ,  ...) is of the order of unity. This expression is 
reasonable from the relations with (2.22) and (2.46). 

Substituting (2.41)-(2.47) into (2.23)-(2.25), (2.27), (2.31) and (2.33), we find that 
it is quite evident that the only reasonable choices for the stretched variable $ and 
the normalizing function do(R) are 

$ = f i x ,  d , (R)  = l/&. (2.48) 
The parameter R in (2.48) is arbitrary at this stage because there is an arbitrary 
reference time t,. Let us show here that the parameter R is uniquely determinable 
from the kind of vapour and an initial condition. From (2.29) and (2.43), we obtain 

u(t ,  0) = 4 m { U 0 ( t ,  O ) +  d , ( R )  U,( t ,  0) + . . .> 
= do@) Uo(t ,O)+d,(R)do(R) U,(t ,O)+ ... 
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where p*(t)  has been expanded in the form of (2.41). Therefore, we obtain 

(2.49 a )  

Noting that Uo (U,  < 0 for condensation) and (2d1,/y)t are of the order of unity, 
we can reasonably choose do or R as follows. 

or 

(2.50) 

(2.51) 

It should be noted that the parameters do and R depenc, upon the condensation 
parameter (gC) and an initial condition (P,(O,O),p:(O)). The functional form of R has 
now been explicitly given ; however, R is still arbitrary. The restriction imposed upon 
R should be determined from the enlargement factor & of the variable x. It is 
reasonable to impose the restriction a 9 1 upon the parameter R. Therefore, the 
initial condition (P,(O, 0) -po*(O))/p:(O) must be chosen so as to be much smaller than 
unity in the case where vC is near the maximum value ( = 4.6904 x 1O-I) ; on the other 
hand, it can be chosen arbitrarily so as to satisfy the restriction fi B 1 in the case 
where g, is very small. The first inner solution of the flow velocity at the vapour-liquid 
interface is given by 

240(t? 1) iPo*(O) P,(t,O)-po*(t) (2.52) 
Po*(t) P , ( O , O )  -PO*(O). 

UO(t?O) = -{ } 
Similarly, the second inner solution Ul(t ,  0) can be obtained from (2.493). 

The governing equations concerning the first inner approximation (subscript 0) 
are : 

(2.53) 

P,* = 0, (2.54) 

(2.55) 

(2.56) 

esot = %oy€P (2.57) 

where the mass flux rate m, is given as 

mo = y+) 
* = 0  

(2.58 a )  

(2.583) 
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Matching one-term inner and one-term outer expansions by using the asymptotic 
matching principle (Van Dyke 1964), we have 

(2.59) Po@, 0) = P,(t ,  m), 

Equations (2.40), (2.54) and (2.59) yield 

e,(t, 0) = Q,(t, a). 

e J ( t , $ )  = 1, (2.60) 

Q,(t, 00)  = 1.  (2.61) 

Equation (2.60) indicates that the vapour pressure in the first approximation is 
spatially uniform and that it is the constant value behind the ‘ideal’ reflected shock 
wave. Equations (2.53), (2.55) and (2.60) yield 

uo* = 8 0 ,  + mo Qo,, (2.62) 

@ot +mo @o+ = QO$$* (2.63) 

Similarly, substituting (2.41)-(2.47) into (2.30)-(2.33), (2.22), (2.35) and (2.36) we 
obtain the boundary and initial conditions 

(2.64) 

(2.65) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

2.5. Temperatures in vapour, liquid film, shock-tube endwall and velocity 
in vapour : first approximation 

We will first attempt to analyse the temperature in the vapour. The temperature field 
of the vapour is described by (2.63). There is no initial condition for 8, and it cannot 
be found from the matching technique. Based on the discussion by Clarke (1967), we 

@ , ( O , @ )  = 1. (2.71) set 

It is consistent with the boundary condition (2.61) at $ = 00. The boundary 
condition a t  3 = 0 is given by (2.64). In the case m, = 0, (2.63) becomes a simple 
heat-conduction equation and it can be easily solved (Carslaw & Jaeger 1959). In the 
case mo =k 0, however, it is not possible to analytically solve this equation by standard 
methods. Beylich (1985) has treated this type of equation, concerning the 
thermodynamics of a single bubble, employing the Laplace transformation in the 
sense of distributions. We will follow here the method which Beylich used. If we defme 
$ as the Laplace transformation of 8, with respect to $, 

d(t ,  P) = P*{Q&, $11 = Srn e-P*@o(t, $1 d$, (2.72) 
0 
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we obtain an ordinary differential equation which the function $ satisfies, 

$t+P(mo-P)$ = ~ ! o ( ~ o - P ) - ~ ; o ,  (2.73) 

where p is the complex variable (not the pressure here), Two = Qo(t ,O) ,  and 
Tk0 = 8, ( t ,  0 )  the gradient of the vapour temperature with respect to @ at the liquid 
surface. $he solution of (2.73) is 

$(t, p )  = $O exp [pat-p 5,” mo(t’) dt’] 

t t 
+! 0 [T,0(t’){mO(t’)-p}--;,(t’)l e ~ p [ p ~ ( t - t ’ ) - ~ ~ ~ , m ~ ( ~ ) d ~ ] d t ’ ,  (2.74) 

$0 = 9*{ 1). where 

Performing the inverse Laplace transformation to (2.74), defined as 

1 q+im 
@ o ( t ,  $1 = q1{(W,p)) = - $( t ,p )  dp, q = Re @), (2.75) 2ni Jq+ 

we finally obtain a solution of (2.63) as 

(2.76) 
Equation (2.76) satisfies the boundary condition (2.61), i.e. 

lim so($, @) = 1, 
*+a 

as it must do. The vapour temperature at the liquid surface can then be obtained 
by taking the limit $+O in (2.76), i.e. 

(2.77) 

Equation (2.77) is an integral equation for the temperature gradient Z’ko with the 
boundary condition (2.64). From (2.62), (2.63) and (2.68), we obtain the solution of 
the velocity of the vapour near the liquid surface, 

uoct, $1 = @o& $1 - Tko(t) -P I60  Two(t) (2.78) 
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where 

{*-J “ m o ( ~ ) d 5 j  
1 Two(t’) mo(t’) - Tko(t’) -do 2(t-t’)i t’ 

and T. Goto 

r t  > 

1 1 

(2.79) 

(2.81) 

(2.82) 

Equations (2.81) and (2.82) show that the flow velocity of the vapour at  the liquid 
surface is smaller than that in the outer region because the high-temperature vapour 
in the thermal boundary layer is cooled and the density consequently becomes large. 

Next, let us proceed to the analysis of the temperature in the liquid film. The 
governing equation of the liquid film is rewritten below : 

I D 
4 o t  - q 4 0 1  0 = 2 0 4 0 @  (2.83) 

for which the boundary and initial conditions are given by (2.65), (2.66) and (2.69). 
We will introduce here a similarity variable 

= f;F(t), (2.84) 

where F is an unknown function which should be sought. Using this similarity 
variable as an independent variable, (2.83) is transformed to 

(2.85a) 

= A, (2.85 b) 
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where the prime denotes differentiation with respect to z. The left-hand side of 
( 2 . 8 5 ~ )  is a function of the variable z alone; on the other hand, the right-hand side 
is a function of the variable t alone. Therefore, ( 2 . 8 5 ~ )  must be equal to a constant 
value, which will be written as A ,  as in (2.856). We then obtain from (2.85a, b)  : 

Oi’ - L O /  - 0. 10 A 10 - 
The solution of ( 2 . 8 6 ~ )  is 

(2.86 a )  

(2.863) 

(2.87) 

where 6,(0) and F(0)  are initial values of 6, and F,  respectively, and they must be 
determined by experiment. The constant A must be negative so that the denominator 
of (2.87) is real at all times. Noting that A c 0, O;, in (2.863) is expected to be a 
function of an exponential type, 

O;, = exp (-2”. (2.88) 

Substituting (2.88) into (2.86b), we obtain A = -t. Finally, we obtain a general 
solution of (2.86b) as 

O l o = c l ~ e x p ( - u 2 ) d u + c 2 ,  (2.89) 

where c1 and c2 are constants of integration, which can be determined from the 
boundary conditions (2.65) and (2.66). Equation (2.89) then reduces to 

%#, f )  = Oso(t ,  y = 0) +G(t) erf[@(t)],  (2.90) 

where 

The temperature of the liquid film at the vapour-liquid interface is given at f = 1 

(2.91) 
in (2.90) to be 

Ol0( t ,  f = 1 )  = Oso(t ,  y = 0) + G(t)  erf [F( t ) ] .  

Equations (2.90) and (2.91) hold for F both with positive and negative signs, because 
erf (-2) = -erf(z) and because of the above definition of the function G. The 
function F with a positive sign in (2.87) will be adopted hereafter. As A = - t ,  

(2.92) 

The initial value F(O)( 2 0) of the function P in (2.92) can be determined in the 
following way. Taking the limit of (2.91) as t + O ,  we obtain 

lim Olo( t ,  f = 1 )  = lim Oso(t ,  y = 0) + lim G(t)  erf [F( t ) ]  (2.93 a )  

(2.93 b)  

where AOlo(t = 0, f = 1 )  is an impulsive temperature variation of the liquid film 
surface just at the instant of reflection of the shock wave. However, there is no 
information about AOl0 in the present theoretical framework and the only way for 
determining i t  is by experiment. A discussion will be given here by treating AOl0 as 

t+o t 4  t 4  

= c+AO,,(t = 0 , f  = l ) ,  
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0 0.5 1 .o 

FIQIJFLE 2. The graph of (2.94) versus F(0). 
40) 

a known quantity. It is physically reasonable to assume that it is positive for 
condensation. Using the boundary condition (2.65) and (2.93a, b), we obtain 

The initial value of the function F can be determined numerically from (2.94), because 
the right-hand side of this equation is now known. The left-hand side increases 
monotonically from unity as F(0)  changes from 0 to a finite value. The graph of (2.94) 
is shown in figure 2. The final value of F as t + co is, on the other hand, 

(2 -95 a) 

(2.95 b)  

where Olo(t+ co,E = 1) = a constant value, the final temperature of the liquid film 
surface. Equation (2.95b) will be proved in $4. For a condition of an incident-shock 
Mach number less than 1.2, F(t+co)  s O(10-2). It is found, therefore, that the 
influence of F on the temperature of the liquid film surface is very small. 

The temperature in the endwall of the shock tube can be obtained by solving (2.57) 
with the boundary and initial conditions (2.67) and (2.70), and it is given by 

where 

The temperature of the endwall surface can be estimated at y = 0 as 

(2.96) 

(2.97) 
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2.6. Unsteady process of reflection of shock wave: second approximation 
We will now proceed to the analysis of the reflection process of the shock wave from 
the heat-conducting and phase-changing surface. The second approximation for the 
outer expansion is treated here. Matching a two-term outer series and a one-term 
inner series for the vapour velocity shows that sl(R) should be put equal to R b .  Then, 

(2.98) we have 
Ul(t,O) = uoct, 00). 

Substituting (2.37)-(2.39) and (2.47) into (2.23)-(2.25), we obtain equations for the 
second-order terms, with suffix 1, 

u1x = Olt -P,t + v,(4, --P,x), (2.99) 

Y@lt + v, u1x) +PlX = 0, 

Y(&+ v,Ol,) = ( Y - l ) ( P , t +  v,Pl,), 

(2.100) 

(2.101) 
where 

Rearranging these equations, we obtain 

(1- m 1 x x  = Put+ v,@Pl,t+Plx(ln v,)'}, (2.102) 

(1 - v",) UlXX = Ultt + v,'o(2ulxt + ulx(ln v,)?. (2.103) 

Expanding the functions p ,  and u1 as 

(2.104) 

(2.105) 

andnotingthatIV,I 4 l,pll - O(K)andull - 0(~),from(2.102)and(2.103),wehave 
P l O X X  = PlOtt, 

UlOXX = UlOtt, 

(2.106) 

(2.107) 

P11xx = Plltt + v,{2P1o,t +p,,(ln v,)'}, (2.108) 

UllXX = Ulltt + W ' l l l O X t  + u,ox(ln v,).). (2.109) 

It may be sufficient to get the solutions only for the first-order terms (pl0 and ul0) 
because I 1. They can be obtained from the wave equations (2.106) and (2.107). 
The boundary conditions can be found at the front of the reflected shock wave. Let 
Us represent the speed of the reflected shock wave relative to the vapour ahead of 
it. The location of xs (the distance from the vapour-liquid interface (x = 0)) can be 
written as 

where 

(2.110) 

(2.1 11) 

and the subscript a denotes a quantity behind the incident shock wave. The pressure, 
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density and velocity of the vapour behind the reflected shock wave are given by 
RankineHugoniot relations as follows : 

(2.112) 

(2.113) 

(2.1 14) 

M, and xs are assumed to be expanded in a series in the perturbation parameter 

(2.115) 
e,(R), i.e. 

(2.116) 

u(t,xs) = - " + L a " { M s ( t ) - - } .  U 1 

a m  Y + l a m  MAt) 

Ms(t) = Mso + %(R) HS1(t) + . * * Y 

x,(t)  = X ~ ~ + C ~ ( R ) =  l:Msl(fldl+ ..., 
P m  a m  

where xso represents the location of a so-called 'ideal' reflected shock wave, i.e. 

xso = (-) Pa aa Msot 
P m  a m  

(2.1 17 a )  

=at (a=(=)M,,). (2.117b) 
P m  a,  

Equations (2.37)-(2.39), (2.112)-(2.115) and the state equation (2.26) yield 

(2.118) 

(2.119) 

(2.120) 

The solutions of the wave equations (2.106) and (2.107) with the boundary conditions 

1 - @  l -a  (2.118) and (2.120) are 

where 201 @=- 
1 +Mi;' 

(2.121) 

(2.122) 

Making use of (2.101), (2.119) and noting that IVJ 4 1,  we obtain 

The unknown function H in (2.121)-(2.123) can be determined from the matching 
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condition (2.98) for the vapour velocity. Letting (2.122) match (2.82) at x = 0, we 
obtain 

(2.124) 

Because (1 - @)/( 1 + @) 4 1 for all permitted reflected shock Mach numbers (Clarke 
1967), the function H can be reasonably approximated by 

H ( t )  = - Tko(t)-p,  do Two@). (2.125) 

The correction function M,, of the reflected shock Mach number is then obtained from 
(2.120), (2.122) and (2.125) to be 

The first term in the braces of the right-hand side of (2.126) represents the effect of 
heat conduction on the reflected shock Mach number, and the second term the effect 
of condensation on it. 

2.7. Temperatures in vapour, liquid film, shock-tube endwall and velocity in vapour: 
second approximation 

Matching two-term inner and two-term outer expansions shows that A,(R) should 
be put equal to Rd. Therefore, matching conditions are 

Pl(t, a) = Pl(t,O), @,(t, a) = e,(t,O). (2.127a, b)  

A set of equations satisfied by the second inner terms is obtained by substituting 
(2.41)-(2.47) into (2.23)-(2.25), (2.27), (2.28), (2.30)-(2.33), (2.22), (2.35) and (2.36) : 

Ul* = 8 1 ,  +mo @1*- 8 0 ,  4- 8 0  4t -mo @ 0 * 4  +m,@o*, (2.128) 

4* = 0, (2.129) 

es1, = eslyy’ (2.132) 

(2.136) 

(2.137) 
1 

P1 
m,, 8, = -- 

(2.138) 

(2.139) 
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Equation (2.129) shows that the correction function P, for the vapour pressure 
depends on the time alone. From (2.121) and (2.127a), Pl is given as 

= yH(t). 

(2.140a) 

(2.140 b )  

The correction function for the vapour temperature can be obtained from (2.130), 
with the initial and boundary conditions 

@,(O, $1 = 6,(0,0), (2.141) 

Tw,(t) = @ , ( t , O ) .  (2.142) 

The initial condition for 8, cannot be exactly determined for the same reason as in 
the first approximation, but it is quite natural to adopt (2.141) by making use of 
(2.1273). It is extremely difficult to obtain an explicit solution of (2.130) because it 
includes unknown functions PI and m, in the inhomogeneous term. However, (2.130) 
can be solved formally by treating the inhomogeneous term as a known function. 
Thus. we obtain 

where T;, = @,,(t, 0), a correction function for the gradient of the vapour tempera- 
ture at  the liquid film surface, and 

I@,$) = P , B , w + ( ~ ) @ o ~ t - m , @ o ~ .  

Taking the limit $ + O  in (2.143), we obtain an integral equation for T;,, 

t’)P,(t’)exp[ --{ 1 {t:mo(c)dc}ldt’ 
(t - t’)i 4(t - t’) 
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The correction function for the liquid temperature can be obtained from (2.131) 
with the boundary conditions (2.134) and (2.135). Using the similarity variable z 

(2.145) 
defined by (2.84), we obtain e;l+2ze;l = J ( z ) ,  
where 

and the prime denotes differentiation with respect to z ;  the variables and z are 
defined in the domains [0,1] and [0, F], respectively. A general solution of (2.145) is 

where c3 and c4 are constants of integration, and el,, is a particular solution to the 
homogeneous part of (2.145), given by 

(2.147) 

The constants cg and c4 are determined from the boundary conditions (2.134) and 
(2.135) as 

cg = exp (P) 

c4 = -&1( t ,  y = O ) ,  
where 

(2.148) 

At the vapouvliquid interface (6 = l), the function el, can be estimated by putting 
z = P i n  (2.146). 

Finally, the correction function 8,, for the shock-tube endwall temperature is 
obtained from (2.132) with the boundary and initial conditions (2.136) and (2.139), 
and is 

(2.149) 

where 

At the liquid-solid interface, the correction function e,, can be estimated by putting 
y = 0 in (2.149). 

3. Remarks on numerical computation 
Remarks on numerical computation of integral equations (2.77) and (2.144) are 

given in this section. These equations are used for getting Tko and 5"kl which are 
necessary for the computation of (2.76), (2.79) and (2.143). 

The integral equations (2.77) and (2.144) have singularities in the denominators 
of the memory integrals. The computation of the memory integrals in these equations 
is made in the following way. For simplicity, let us consider here a typical example, 
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The right-hand side of (3.1) may be discretized as 
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where t ,  = 0 and ti = t .  It should be noted that the above integral varies as the time 
t (  = tt) elapses because the integrand is a function of the time. The function X will 
be approximated by a straight line within a small time interval [tn, t ,+l] ,  i.e. 

Using (3.3), (3.2) is then reduced to 

where 
Y = z ( X ) + $ X , - ( t - t , - , ) ! ,  (3.4) 

+ iAXk+1{ (2t + t k )  ( t  - tk)+- (2t + tk+l) ( t- tk+lP}] +ixi-l‘ ( t - t , - , ) f .  

The memory integral Y has been divided into two parts ; one of them can be evaluated 
by known quantities and the other still contains an unknown quantity X , .  

We will apply the above numerical method for the memory integral (3.1) to (2.77). 
Defining X ( l )  and X ( 2 )  as 

X(l ) ( t ,  t’) = Tko(t’) exp [ - d ( t ,  t ’ ) ] ,  

g 2 ) ( t ,  t ’ )  = Two(t’){mo(t’) -+E0(t ,  t ’ ) }  exp [ -w2(t ,  t ’ ) ] ,  

(3.5) 

(3.6) 
(2.77) can be expressed as 

where 

I rt 
m,(t, t ’ )  = - J ~ , ( C I ~ C .  - 

t - t ‘  t’ 

Equations (3.5) and (3.6) diverge at t’ = t ;  therefore, (3.7) also diverges at  t’ = t .  

lim w(t ,  t ’ )  = 0, However, noting that 
t ‘4 

limZ,(t, t’) = mo(t), 

Xi’) = l i m B  l )  - - Tko(t), 

we obtain t ‘A 

t ’ 4  
(3.8) 

Xie) = lim X ( 2 )  = +mO(t) Two@). (3.9) 
t’+t 

The singularity at t’ = t of (3.5) and (3.6) has now been removed. Using (3.4), 
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(3.7)-(3.9) and putting At = tb- t i - l  = constant, we finally obtain the temperature 
gradient Tk, of the vapour at the liquid surface as 

(3.10) 

where the vapour temperature Two at the liquid interface in (3.10) is given by (2.64).  
The timestep At must be determined by trial and error. Tentative numerical results 
showed that the above procedure was sufficiently accurate for At < 0.1. Equation 
(2.144) can be solved by the same method as above. 

Finally, we should remark on the computation of (2.76) and (2.143) for temperature 
distributions. For simplicity, let us consider the special case m, = 0. Then, (2.76) 
reduces to 

+A[erf{k} 2 2tf +a , Two(t’)‘exp{ (t-t’)i - f T ) d t ’ ] .  4( t - t  ) (3.11) 

In the limit $+a, (3.11) approaches unity, as it must do. In  the limit $ + O ,  on 
the other hand, the right-hand side of (3.11) apparently approaches +Two, although 
it should approach Two if (3.11) is the correct solution of (2.63) form, = 0.  This comes 
from the peculiar (b-function-like) character of the memory integral in the second 
term of the right-hand side of (3.11),  

- J t  $ exp { $’ } dt’. 
2 d  , (t- t’)i  4(t - t’) 

Defining a function as - 
g ( t - t ’ ,  9) = - 1 

@ e x p { - p O .  $’ 2x4 ( t - t ’ ) i  
(3.12) 

we find that the function g(t-t’, $) has the following character in the limit $ + O :  

(i) g(t-t’, $ ) + O  ( t  9 t’), 
(ii) g(t-t’ ,  $)+a (t = t’), 

(iii) J: g ( t  - t’, $) dt’ + 1 .  

These properties are similar to those of a Dirac &-function. Figure 3 shows the function 
g ( t - t ’ , $ ) .  It is therefore found that (3.11) approaches Two in the limit $ + O ,  as 
expected. Due to the b-function-like character of the function g, numerical difficulties 
take place in the neighbourhood of $ = 0 because of the finite value of the space step 
in the computation. The temperature deviates from the actual one near the interface. 
The temperature distribution is here estimated near the interface by an interpolation 
between the surface temperature (given) and a temperature a little distance from the 
interface. The numerical procedure for (2.143) is the same aa the one above. 

4. Numerical results and discussion 
Numerical computations have been performed for a methanol vapour by running 

the condensation parameter Q, through the values: 4.6904 x lO-l, 4.6904 x lo-’, 
4.6904 x The temperature parameter crt is assumed to be 4.4675 x 10-l (Sone & 
Onishi 1973, 1978). The initial conditions prior to the incidence of the shock wave 
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FIGURE 3. The graph of function g(t- t ’ ,  $) defined by (3.12). 

on the endwall of a shock tube are: vapour, liquid film and endwall temperatures 
293.15 K; vapour pressure 9.7285 x los Pa (80 % of the saturated vapour pressure at  
293.15 K); incident-shock Mach number 1.15. These conditions are chosen so that 
the boundary conditions for the vapour velocity and the temperature at the liquid 
film surface can remain valid throughout the condensation process in the reflected 
shock region. The physical properties of vapour, liquid film and shock-tube endwall 
(optical glass: crown) are shown in table 1. The initial thickness of the liquid film 
is found to have no large influence on the gas dynamics and the consequent growth 
of the liquid film; therefore, it has been assumed here to be 0.01 pm. 

Figure 4 shows the time history of the surface temperatures of the liquid film and 
the shock-tube endwall. The origin of the time is taken at the moment of the 
shock-wave reflection. The temperature is normalized by T, = 331.18 K, the tem- 
perature in the ‘ideal’ reflected shock region. The broken line indicates the first 
approximation of the perturbation solution and the solid line the second approxima- 
tion. The initial value F(0)  of the function F (equation (2.92)) is assumed to be 0.01 : 
it  will be shown at the end of this section that the h a 1  value F(t+ 00) is about 0.025. 
Thus, the effect of F on the surface temperatures of the liquid film and the shock-tube 
endwall is found to be very small. The difference between the first and second 
approximations is also very small; for example, it is less than 1.5 “C even for 
gC = 4.6904 x lo-’ (figure 4(a, b)). The first approximate solutions are therefore 
adequate for the estimation of the liquid film and the endwall surface temperatures. 
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Vapour (methanol) 

Specific heat at constant pressure (Ca) 1.28 x lo* J/(kgK) 
Latent heat of condensation (L') 1.10 x 10' J/kg 
Gas constant (a') 2.56 x 10' J/(kgK) 
Thermal conductivity (A')  - 1.68 x lo-* W/(mK), 
Specific heat ratio (7) 1.25 

Liquid (methanol) 

Thermal difFusivity (D;)  1.06 x 10-7 m*/s 
Thermal conductivity (A;) 2.11 x 10-1 W/(mK) 

Solid (crown glass) 

Density (pi)  7.93 x lo* kg/m8 

Thermal difisivity (4) -5.74 x 10-7 ma/s 

TABLE 1. Physical properties of the vapour, liquid 6lm and shock-tube endwall (optical glass: 
crown) at approximately 20 "C. 

Thermal conductivity (A:) - 1.05 W/(mK) 

--- First approximation - Second approximation 

I I I 1 I I I I I 

The larger the value of vc, the more rapid and the larger become the temperature 
rises of the liquid film and the endwall surfaces because of the larger release of latent 
heat of condensation. The surface temperature of the liquid film is slightly higher than 
that of the endwall. The difference between them is about 0.4 'C even at the time 
of 100 ps for Q, = 4.6904 x l O - l ,  and also negligibly small for 4.6904 x lops. This 
indicates that the thermal condition of the liquid film is governed by that of the 
shock-tube endwall. 

Figure 5 shows the time history of the vapour temperature at the liquid film surface. 
The difference between the approximations is small; therefore, the first 
approximation is adequate for the estimation of the vapour temperature. In the case 
vc = 4.6904 x l O - l ,  the temperature changes greatly within a few microseconds and 
attains a nearly constant value ( =  302 K), while in the case of the smaller values, 

11 P L Y  l&u 

FIGURE 4(a). For caption see next page. 
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First approximation 
Second approximation 

0.85 

0 50 100 
1 (IN 

- Liquid film -- - - Endwall 

0 50 100 

RQWRE 4. The time history of the surface temperatures of the liquid film and the shock-tube endwall 
((a) liquid-film surface temperature, (a) endwall surface temperature and (c) comparison between 
liquid film and endwall surface temperatures (second approximation)). 

t (P) 

it  drops rapidly and then continues to increase gradually as the surface temperature 
of the liquid film rises. The abrupt and discontinuous temperature drop occurs for 
all Q, a t  the instant of the reflection of the shock wave, but its structure cannot be 
treated in the framework of the present perturbation analysis because it takes place 
on the timescale of the collision time of vapour molecules. The condensation under 
consideration is a phenomenon which occurs on a much longer timescale. The larger 
the value of Q,, the higher the vapour temperature, because i t  is proportional to the 
flow velocity of vapour at the liquid surface. 

Figure 6 shows the temperature distributions in the vapour, liquid film and 
shock-tube endwall: (a) CT, = 4.6904 x lO- l ,  (b )  u, = 4.6904 x lo-* and (c) 
Q, = 4.6904 x The computation is stopped 10 ps after the reflection of the shock 
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0.8 - 

0.7 

a, = 4.6904 x lo-' 

---- First approximation 
- Second approximation 

I I I I I I I I I 

t =  1 ps - 11.0 - 
(0) uc = 4.6904 x lo-' 

61 

- 0.8 - 
- 

1 10 ps (b) u, = 4.6904 x lo-* 

- 4 4 
d 

i 0.8 2 

(c) u, = 4.6904 x 

I I I I I I 

X 

I 

5 Y  O 0 2 4 
0 5 1  ( x  103 

FIQURE 6. Temperature distributions in the vapour, liquid 6lm and shock-tube endwall. 

317 

11-2 



318 S. Fujikawa, M. Okuda, T. Ahmutsu and T. Goto 

1 .o 

uc = 4.6904 x lo-' 

uc = 4.6904 x 10-2 

uC = 4.6904 x 10-8 

0.9 y' 

FIQUFLE 7. The time history of the vapour pressure. 

- - - - First approximation 
- Second approximation 

KJ 

0 

FIQURE 8. The time history of the vapour velocity at the liquid-film surface. 

wave because it is very time consuming: only the first perturbation solution of the 
temperature distribution is computed. The space coordinate in the vapour region is 
normalized by a mean free path I ,  = 16p,/(5p,(2nW'TW)t) = 2.2566 x 10-' pm, in 
the liquid-film region by an instantaneous thickness of the liquid film, and in the 
endwall region by a reference quantity (Di7)f = 7.5750 x lo-' pm (7 = 1 ps). It is 
found that the larger the value of Q,, the more remarkable is the development of 
the thermal boundary layer into the vapour region prevented. This is because the 
thermal boundary layer develops against the counter flow of the vapour, which 
becomes larger according to the increase of 6,. The temperature in the liquid film 
is found to be spatially uniform. The temperature jump at the vapour-liquid interface 
is small for all values of Q, under the present condition. 

Figure 7 shows the time history of the vapour pressure (second approximation). 
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Integration of (4.4) 

Second approximation 
------ First approximation - 
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FIGURE 9(a). For caption we page 321. 

The pressure is normalized by p ,  = 1.7786 x lo4 Pa, which is determined from the 
Rankine-Hugoniot relation. The first approximate solution for the pressure is just 
unity. At  the instant of reflection of the shock wave, the pressure drops rapidly by 
about 15 % from the Rankine-Hugoniot value for cr, = 4.6904 x lO-l ,  while it drops 
only by about 0.3 % for cr, = 4.6904 x lod3. The pressure drop is mainly caused by 
the density decrease due to the rapid condensation at  the liquid surface (equation 
(2.140)). 

Figure 8 shows the time history of the vapour velocity at  the liquid surface. The 
vapour flow is subsonic for all cases of cr, and it is greatly influenced by the value 
of cr, at the initial time stages. 

Figure 9 shows the time history of the thickness of the liquid film on the shock-tube 
endwall: (a) crc = 4.6904 x lO-l ,  (b )  cr, = 4.6904 x 
The growth behaviour of the liquid film is drastically influenced by the value of cr,. 
The growth of the liquid film is characterized as follows: 

(i) There exists a transition process from a t-dependent growth of the liquid film 
to a &-dependent one. 

(ii) The t-dependent growth is governed by the condensation parameter cr,, while 
the tf-dependent one is independent of it. 

(iii) The transition time before the tf-dependent growth begins becomes shorter 
with increase of cr,. 

Let us consider in detail the transition mechanism of the liquid-film growth. The 

and (c) cr, = 4.6904 x 
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0 

I Integration of (4.4) ------ First approximation 
Second approximation - 

u. = 4.6904 x lo-’ 
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50 100 
( t (ctS)) t  

FIGURE 9(b) .  For caption see facing page. 

growth rate of the liquid film can be described by (2.583), (2.68), (2.91) and (2.97) 
as follows: 

dO(t)  = - (+d1610(t,E = 1)-d,}, 
P1 l-P:(O) YC 

61o(t, E = 1) = dS0(t, y = 0 )  (4.2a) 

(4.2b) 

where the assumptions of p(t, 0) = p*(t )  and IF1 4 1 are made, the saturated vapour 
pressure is given by p: = d,61,+d, (d ,  = 11.677 and d,  = -9.6520 for the present 
condition), and the heat transferred by the heat conduction is neglected because it 
is much smaller than the latent heat of condensation. Equations (4.1) and (4.2a, b) 
indicate that the growth rate of the liquid film is influenced by the temperature change 
of the liquid-film surface and vice versa. From (4.1) and (4.2b), we obtain the second 
kind of Volterra integral equation : 
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- -- - - First approximation 

FIGURE 9. The time history of the thickness of the liquid film formed on the shock-tube endwall. 
(a) Variation of the liquid-film thickness versus the time, (b)  variation of the liquid-film thickness 
versus the square root of the time and (c) variation of the liquid-film thickness versus the square 
root of the time for a longer period: a, = 4.6904 x lo-*. 

The second term on the right-hand side of (4.3) represents the variation of the growth 
rate of the liquid film owing to the temperature change of the liquid-film surface. It 
is found that the growth rate of the liquid film is almost constant at the early stages 
when the temperature change of the liquid film is small, but it begins to vary as 
the temperature changes. The solution of (4.3) can be obtained by the Laplace 
transformation (Erdelyi et al. 1954) as 

do(t) = B exp (C2t) erfc (Cti). (4.4) 

Numerical solution of the differential equation (4.4) is also shown in figure 9(a, b). 
It is in fair agreement with the first and second perturbation solutions, especially in 
the early time stages. 

We will inspect the asymptotic behaviour of (4.4) now. For Cti d 1, (4.4) is 
expanded as follows : 

d0( t )  9 B{  1 -2C('>'+. x . .} (4.5a) 

(4.5b) = B. 
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The integrated form of (4.5 b )  is 

or, in a dimensional form, 
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aO(t) = Bt + el ( 4 . 6 ~ )  

(4.6b) 

where el and ei are constants. The latter constant ei is an initial thickness of the liquid 
film. The liquid film grows in linear proportion to the time, and the growth rate of 
the liquid film is constant if the condensation parameter is constant for a vapour. 
It should be noted that the growth rate of the liquid film is dependent on the 
condensation parameter. The surface temperature of the liquid film is then given from 
(4.2b) and (434): 

2 P l B y S t ) t *  (4.7) elo(t,E = 1) = c+- - 
4 

The second term on the right-hand side of (4.7) is very small in comparison with the 
initial endwall temperature c at this stage. 

For Cti % 1, on the other hand, (4.4) is expanded as follows: 

( 4 . 8 ~ )  

(4.8 b)  

( 4 . 9 ~ )  
2B t 4 The integral form of (4.8b) is 

aO(t) + z(--) +e, 

(4.9b) 
or, in a dimensional form, 

where e2 and e; are constants. The latter constant e; can be regarded as a liquid-film 
thickness at  the instant when the film begins to grow in proportion to the square root 
of the time. It should be noted that the growth behaviour of the liquid film is not 
influenced at all by the condensation parameter. The surface temperature of the 
liquid film is then given from (4.2b) and (4.8b) as 

l - d  1 - d , c - d 2  
Ol0(t, E = 1) = 2- 

d ,  d,C(xt): 
(4 .10~)  

(4.10b) 

This result indicates that the state in which the condition Cta 9 1 is satisfied can be 
regarded as a final equilibrium state. The temperature approaches a constant value 
given by (4.10b) a t  this stage. It is 0.912 for the present condition and it is shown 
in figure 4(a). From (2.95a), ( 4 . 9 ~ )  and (4.10b), we can obtain the final value of the 
function F as t+m, i.e. (2.95b). This value is 0.025 for the present condition. It is 
found that the function F has little influence on the temperature of the liquid film. 
Concerning the effect of the condensation parameter upon the transition time, the 
larger the condensation parameter, the more rapidly does the surface temperature 
of the liquid film rise and, in consequence, the more rapidly does the state attain the 
final equilibrium form. 
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It should finally be stressed that there exists a transition process of the liquid-film 
growth from the t-dependent growth to the &-dependent one and that the conden- 
sation parameter is related to the t-dependent growth. This suggests that the 
measurement of the condensation parameter by shock tubes should be made while 
the liquid film is growing in proportion to the time. 

5. Conclusions 
The condensation phenomenon of a vapour on the endwall of a shock tube behind 

a reflected shock wave has been investigated by the method of matched asymptotic 
expansions. The effects of the condensation parameter on the gas dynamics, the 
thermal process in the liquid film and the shock-tube endwall, and the growth 
behaviour of the liquid film have been quantitatively predicted. It has been found 
that there exists a transition process in the growth of the liquid film, that is, the liquid 
film grows approximately in proportion to the time in the early stages after the 
reflection of the shock wave and later in proportion to the square root of the time. 
The transition time from the t-dependent growth to  the &dependent one depends 
principally upon the condensation parameter. In  the t-dependent growth region, the 
growth rate of the liquid film is proportional to the condensation parameter, 
depending upon an initial condition and the thermal properties of the vapour and 
the liquid film, while in the d-dependent growth one it becomes independent of the 
condensation parameter and is controlled only by thermal properties of the vapour, 
liquid film and shock-tube endwall. This result suggests that the measurement of the 
condensation parameter of vapour by shock tubes should be made in the t-dependent 
growth region, i.e. in the early stages after the reflection of the shock wave. 
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